Surface Chemistry

DOI: 10.1002/ange.200900322

Oxygen Atom Transfer in the Photocatalytic Oxidation of Alcohols by TiO₂: Oxygen Isotope Studies**

Miao Zhang, Qi Wang, Chuncheng Chen, Ling Zang, Wanhong Ma,* and Jincai Zhao*

The selective oxidation of alcohols into carbonyl compounds using dioxygen in lieu of toxic or corrosive stoichiometric oxidants such as ClO^- , Cr^{IV} , and Cl_2 , is one of the most challenging functional group transformations. The oxidation of alcohols using dioxygen as the oxidant has been successfully realized by using noble-metal and transition-metal complexes for catalysis. TiO₂ photocatalysis has also attracted much attention as a potential and promising strategy for this aim, because of its high oxidation ability, environmentally friendly properties, and the benefit of using O₂ as an oxidant and light as the driving force. A few successful cases involving TiO_2 photocatalysis in acetonitrile, water, or solvent-free systems have recently been reported.

Molecular oxygen plays a vital role in the aerobic oxidation of alcohols in all these systems. Therefore, it is significant and necessary to reveal how the dioxygen participates in the reaction process. In the noble-metal catalysis system, the role of dioxygen has been proven to oxidize the reduced noble-metal center (for example, M^0 or M^{n+} hydride species) without an O-atom transfer from dioxygen to the products.^[5] In the aerobic oxidation of alcohols in the cytochrome P450 system, a gem-diol intermediate is formed, in which one hydroxyl group comes from the alcohol substrate (ca. 100 % ¹⁶O abundance) and the other from O₂ (98 % ¹⁸O labeled). Such a gem-diol intermediate leads to approximately 50% of the carbonyl product having incoorporated ¹⁸O atoms.^[6] Unlike these thermal catalytic systems, the essential role of dioxygen in the oxidation of alcohols by TiO₂ photocatalysis has not been completely clarified yet. Herein we disclose an unexpected phenomenon: when the photocatalytically oxidative transformation of isotopelabeled alcohols was performed over pure anatase TiO2 in organic solvents, such as benzotrifluoride (BTF), the oxygen atom in the substrate alcohol is completely replaced by one of the oxygen atoms of dioxygen, that is, the photocatalytic process involves a selective cleavage of the C-O bond of the alcohol with concomitant formation of a new C=O bond in the product aldehyde in which the O atom comes from dioxygen. This finding adds fundamental insight to the oxidation process of alcohols on the TiO_2 surface, which is of importance for both the TiO_2 photocatalysis and the selective oxidation of alcohols.

¹⁸O-enriched benzyl alcohol and cyclohexanol were used for the TiO₂ photocatalytic oxidation (Table 1). The original abundance of ¹⁸O in the ¹⁸O-enriched benzyl alcohol was 65 % (Table 1, entries 1–2) and 90 % (Table 1, entries 4–7), respec-

Table 1: Abundance of ${}^{18}\mathrm{O}$ in the substrates and products. ${}^{[a]}$

R ¹	¹6 O ₂/BTF	R ¹		14 10
CH— ¹⁸ OH —	TiO_2 , hv	C=160	+	H ¹⁶ O ¹⁸ OH

11		1102,	K	
Entry	Conversion [%]	Selectivity [%]	Substrate (¹⁸ O: ¹⁶ O)	Product (% 16O)
1 2 ^[b] 3 ^[c]	40 43 10	100 99 100	C ₆ H ₅ CH ₂ OH (65:35)	$C_6H_5CHO (>99)$ $C_6H_5CHO (>99)$ $C_6H_5CHO (50)$
4 5 6 7 ^[b] 8 ^[d]	17 42 65 43 52	99 99 99 99	C ₆ H ₅ CH ₂ OH (90:10)	C ₆ H ₅ CHO (> 99) C ₆ H ₅ CHO (17)
9 10 11	11 20 47	99 99 99	C ₆ H ₁₁ OH (77:23)	$C_6H_{10}O \ (>99)$ $C_6H_{10}O \ (>99)$ $C_6H_{10}O \ (>99)$

[a] The reactions were carried out in BTF solutions (1.5 mL) of alcohols (0.1 mmol) with TiO $_2$ (0.1 mmol, 5.3 g L $^{-1}$) under 0.1 MPa O $_2$, and 100 W Hg lamp irradiation. [b] TiO $_2$ was treated by stirring in H $_2$ ¹⁸O (98% 18 O) under UV irradiation for 12 h. [c] The reaction was carried out on a 1 cm× 2 cm TiO $_2$ electrode under UV irradiation for 12 h under Ar (>99.99%). The bias potential was 0.6 V vs. SCE. [d] The reaction was conducted under Ar, 0.1 mol% Pt/TiO $_2$ was used as the photocatalyst.

[*] Dr. M. Zhang, Dr. Q. Wang, Prof. C. Chen, Prof. W. Ma, Prof. J. Zhao Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry

Chinese Academy of Sciences, Beijing, 100190 (China)

Fax: (+86) 10-8261-6495 E-mail: jczhao@iccas.ac.cn whma@iccas.ac.cn

Prof. L. Zang
Department of Materials Science and Engineering
University of Utah, 122S. Central Campus
Salt Lake City, UT 84112 (USA)

[**] This work was supported by 973 project (No. 2007CB613306), NSFC (Nos. 20537010, 20772129 and 20877076) and CAS.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.200900322.

tively. However, the ¹⁶O abundance in the product, benzylaldehyde, was approximately 100% in all these experiments when analyzed at different conversions. This result indicates that an oxygen atom transfer from the dioxygen to the product during the reaction process. Moreover, little change in the abundance of ¹⁸O in the unreacted alcohols was observed, indicating no isotope exchange between the substrate and product, or between the substrate and dioxygen. In entries 2 and 7 of Table 1, the photocatalyst TiO₂ was treated with ¹⁸O-enriched water (98% ¹⁸O abundance) under UV irradiation for 12 hours to replace the surface H₂O/OH

Zuschriften

groups with ¹⁸O-enriched H₂O/OH groups. When the ¹⁸O-enriched TiO₂ surface was used as the photocatalyst, the oxygen atom in the product was still replaced with ¹⁶O completely. This observation implies that the O atom transferred into the product did not originate from the surface-bound water or OH groups of TiO₂, also excluding the involvement of the common 'OH radicals as the active oxidizing species in the aqueous TiO₂ photocatalysis.^[3a]

In a photo-electrochemical experiment under an anaerobic Ar atmosphere (Table 1, entry 3), the photo-generated electrons on the conduction band were transferred to the counter electrode, and hence the alcohol could also be oxidized into the corresponding aldehyde in the absence of O_2 . In this process, a two-electron transfer (TET) process (Scheme 1) occurs, [8a] and the oxygen atom of the alcohol

Scheme 1. The two-electron transfer mechanism in the oxidation of alcohols in the absence of O_2 .

should remain in the product. As shown in entry 3 of Table 1, the product was found to retain the original ¹⁸O-enriched content after reacting for 12 hours. The little increase (from 35% to 50%) in the abundance of ¹⁶O in the product may come from the dioxygen mixed into Ar and dissolved in the solvent (BTF). In another anaerobic experiment using Pt/ TiO₂ as the photocatalyst (Table 1, entry 8), the alcohol could also be oxidized by a TET process because the electrons on Pt/TiO₂ could combine with protons to lead to the continuous production of H₂ under the catalysis of Pt clusters. [8b,c] The abundance of ¹⁸O in the product was found to be 83%. These results, in comparison with those under aerobic conditions (Table 1, entries 4–6), clearly indicate that an O atom transfer is not involved in the oxidative transformation of the alcohol when the reaction is run in the absence of dioxygen, although the alcohol can still be oxidized into the corresponding aldehyde by a TET process.

A similar oxygen atom transfer phenomenon could also be observed in the photocatalytic oxidation of ^{18}O -enriched cyclohexanol (77% ^{18}O) into cyclohexanone at different conversions (Table 1, entries 9–11). In other solvents, such as CH₃CN, CH₂Cl₂, and C₆H₁₄, the oxygen atom transfer process was also observed (Table 2). These results unambiguously demonstrate a selective cleavage of the α -C–O bond of the alcohol, with the incorporation of an oxygen atom from the dioxygen to form a new C=O bond in the aerobic photo-oxidation of alcohols by TiO₂ photocatlysis. Such an oxygen atom transfer mechanism has not been proven either in the photocatalytic or noble-metal catalytic transformation of alcohols.

To reveal the oxygen atom transfer mechanism, some possible reaction processes can be ruled out based on our investigations:

Table 2: The oxygen atom transfer in the photocatalytic oxidation of benzyl alcohol in different solvents.^[a]

Entry	Solvent	Substrate (¹⁸ O: ¹⁶ O)	Conversion [%]	Selectivity [%]	Product (% ¹⁶ O)
1	BTF		51	99	> 99
2	CH_3CN	C ₆ H ₅ CH ₂ OH	44	99	> 99
3	CH ₂ Cl ₂	(90: 10)	31	99	> 99
4	C_6H_{14}		40	99	> 99

[a] The reactions were carried out under 0.1 MPa O_2 and 100 W Hg lamp irradiation for 4 h. Benzyl alcohol (0.1 mmol), TiO_2 (0.1 mmol, 5.3 g L⁻¹), solvents (1.5 mL).

1) The TET mechanism for the oxidation of alcohols could be easily ruled out. In the TET process (Table 2, entries 3 and 8), the oxygen atom in dioxygen is not incorporated into the product and no oxygen atom transfer will occur. When dioxygen exists in the reaction system, the O_2 molecule reacts easily with the alcohol radical and therefore limits the TET process. Thus, the contribution of the TET process can be ignored under the aerobic atmosphere.

2) The photocatalytic reaction in organic solvents such as BTF was dramatically different from that in water. The ESR trapping experiments showed that the main active oxidative species in aqueous system is the 'OH radical, [9] which was, however, not detected in the BTF system (see Figure S4 in the Supporting Information). The experiments on kinetic isotope effect (KIE) were carried out for the TiO₂ photocatalytic oxidation of C₆H₅CH₂OH/C₆H₅CD₂OH under aerobic conditions. The KIE values were 1.2 and 4.6 in BTF and the aqueous system, respectively. The significant difference in the KIE values indicates different photocatalysis mechanisms in the two systems, that is, the abstraction of the β -hydrogen atom of the alcohol by 'OH radical is the rate-determining step in the aqueous system, but not in the BTF system.[10] Therefore, in the BTF system, a broad range of alcohols including aryl, aliphatic, and enolic alcohols could be oxidized to their corresponding aldehydes or ketones with high selectivity (see Table S2 in the Supporting Information). In comparison, much poorer selectivity in the aqueous system was observed (using benzyl alcohol as a substrate, 38% selectivity and 45% conversion at 8 h; and 45% total organic carbon (TOC) was removed after 12 h of photoreaction).

We therefore propose the possible reaction mechanism as shown in Scheme 2: an alcohol molecule adsorbs onto the surface of TiO₂ to form the structure **I** via a deprotonation process. TiO₂ is excited by UV light to produce h⁺/e⁻ pairs. The adsorbed alcohol first reacts with the photo-generated hole and subsequent deprotonation to form a carbon radical, whereas the photo-generated electron is captured by Ti^{IV} to form Ti^{III} (**II**). Both of the carbon radical and the Ti^{III} are easy to combine with dioxygen.^[3] The oxygen bridge structure **III** may form through two possible routes: 1) the electron/Ti^{III} (in the conduction band) first reduces O₂ to the superoxide, which then attacks the carbon radical to form intermediate **III** or 2) the carbon radical first combines with dioxygen to form an organic superoxyl radical which additionally reacts with Ti^{III} to form structure **III**. The concerted cleavage of C⁻O

Scheme 2. The proposed oxygen transfer process in the TiO₂ photocatalytic oxidation of alcohols in BTF solvent in the presence O2.

bond of the alcohol and the O-O bond of dioxygen is likely realized through such an oxygen bridged structure III. A similar structure was also observed when the dioxygen reacts with iron complexes such as deoxyhemerythrin. [11] The TiO₂bound peroxide bridge structure IV, as one of the two products of the concerted bond-cleavage process (III→IV), may then combine with the protons to form H₂O₂, which was evidenced by iodometric titration method (see Figure S5 in the Supporting Information). An analogous side-on peroxide of Ti site (IV) has been reported in the tilanosilicate photocatalysis in the presence of F⁻ ions.^[4d]

Isotope-labeled resonance Raman spectroscopy was used to detect the peroxide O-O bond formation in the photocatalytic oxidation of benzyl alcohol. Figure 1B shows the

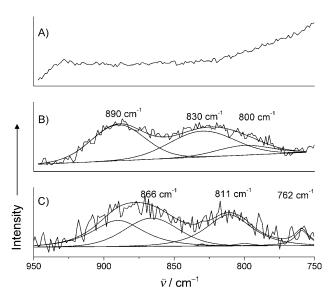


Figure 1. Low-frequency resonance Raman spectra: A) the Raman spectra of TiO₂ photocatalyst used in this work. B) Raman spectra of the TiO₂ photocatalyst with ¹⁶O benzyl alcohol after three hours of photoreaction. C) Raman spectra of the TiO₂ photocatalyst with ¹⁸O benzyl alcohol after three hours of photoreaction.

Raman spectrum of the TiO₂ catalyst with ¹⁶O-benzyl alcohol as the substrate after the photocatalytic reaction for three hours, and Figure 1C gives the Raman spectrum of the TiO₂ catalyst with ¹⁸O benzyl alcohol (90 % ¹⁸O abundance) after three hours of photoreaction. Comparing with the Raman spectrum of TiO₂ (Figure 1 A), new peaks at 890 cm⁻¹, 830 cm⁻¹, and 800 cm⁻¹ appeared in Figure 1 B, respectively. The peak at 800 cm^{-1} could be assigned to the $\nu(\text{O-Ti})$ in structure I. The isotopic shift (peak at 762 cm⁻¹ in Figure 1 C) fits the calculated value (762 cm⁻¹), and the peak at 830 cm⁻¹ in Figure 1B could be assigned to the $\nu(C-O)$ stretch vibration of the adsorbed alcohol, which has an isotopic shift of 19 cm⁻¹ (811 cm⁻¹ in Figure 1 C), very close to the calculated value of 20 cm⁻¹. The 890 cm⁻¹ band in Figure 1 B is assigned to the $\nu(^{16}O^{-16}O)$ of a side-on coordinate peroxide (IV).[12a] Similar bands have been reported for Ti complexes. [12b] In Figure 1 C, the 890 cm⁻¹ band of the ν (16O-16O) still remained, but was much weaker. The new band at 866 cm⁻¹ is assigned to the $\nu(^{16}\text{O}^{-18}\text{O})$ in structure **IV**. The isotopic shift of 24 cm⁻¹ for this mode was very close to the shift of 25 cm⁻¹ predicted by Hooke's law for a diatomic O-O stretch. The existence of the 16O-18O bond confirms the concerted cleavage process III→IV (Scheme 2) of the C-O bond of the alcohol and the O-O bond of the dioxygen.

In summary, it is reported for the first time that an oxygen atom transfer, from the dioxygen to the α -carbon atom of the alcohol, dominates the reaction process of the photocatalytic oxidation of alcohols by TiO₂ in organic solvents such as BTF. This new discovery helps us to better understand of the TiO₂based photocatalysis and the selective oxidation of alcohols, and to find broad applications in the synthesis of organic compounds.

Experimental Section

Photocatalysis: The photocatalytic reactions were carried out under irradiation by a 100 W high-pressure Hg lamp (Toshiba SHL-100UVQ) with continuous stirring in a 10 mL Pyrex glass bottle (cut-off light below 300 nm, thus TiO2 can be excited but not the substrates) under O2 (0.1 MPa). The radiant flux received by the reactor was 12.1 mWcm⁻². A typical reaction system contained 0.1 mmol substrate and 0.1 mmol TiO₂ (5.3 g L⁻¹) in 1.5 mL benzotrifluoride (BTF) solvent. The products were detected by GC-MS methods (Thermo-Finingan; Trace 2000/Trace DSQ) with a DB-5MS column (30 m \times 0.25 mm).

The photocatalyst TiO₂ was prepared by a hydrothermal process (see the Supporting Information). Pure anatase particles with average size of 10 nm and surface area of 210 m² g⁻¹ were obtained.

In this work, we defined the conversion and selectivity for the alcohol oxidation as:

Conversion = $(c_{r_0} - c_r)/c_{r_0} 100 \%$

Selectivity = $c_p / (c_{r_0} - c_r) 100 \%$

 c_{r_0} : the initial concentration of the reactant;

 c_r : the concentration of the reactant during the reaction;

 $c_{\rm p}$: the concentration of the product during the reaction.

Photo-electrochemical studies: The photo-electrochemical experiments were carried out using a potentiostat at an applied bias of 0.6 V vs. SCE, under the protection of Ar. A Pyrex glass bottle (cutoff light <300 nm) was used as the electrochemical cell. The supporting electrolyte used was $0.05 \,\mathrm{M} \, (t\mathrm{Bu})_4 \mathrm{N}^+ \, (\mathrm{PF}_6)^-$. A TiO₂ film electrode was prepared by coating the precursor TiO₂ gel (prepared by the hydrothermal process) onto a 1×2 cm² ITO glass slide and subsequent heating at 450 °C for 3 h. In this system, a TiO₂ film electrode was used as the working electrode, a saturated calomel electrode (SCE) as the reference electrode, and a platinum plate as the counter electrode. The experiments were carried out under irradiation using a 100 W Hg lamp; 0.2 mmol of the substrate was added into 10 mL BTF, and the reaction time was 12 h.

The Raman spectra were recorded in the backscattering geometry by using a Renishaw-2000 Raman spectrometer with the 514.5 nm line of an Ar ion laser as the excitation source. TiO₂

6199

Zuschriften

photocatalyst after photoreaction was separated with centrifuge, and then dried at room temperature. The solid samples were detected on microscope slides ($25.4~\text{mm} \times 76.2~\text{mm}$, 0.5~mm thick).

Received: January 19, 2009 Published online: April 2, 2009

Keywords: alcohols \cdot isotopic labeling \cdot oxidation \cdot photocatalysis \cdot titanium

- a) T. Mallat, A. Baiker, *Chem. Rev.* **2004**, *104*, 3037, and references therein; b) P. L. Anelli, C. Biffi, F. Montanari, S. Quici, *J. Org. Chem.* **1987**, *52*, 2559–2562; c) S. Patel, B. K. Mishra, *J. Org. Chem.* **2006**, *71*, 6759–6766.
- [2] a) J. A. Mueller, M. S. Sigman, J. Am. Chem. Soc. 2004, 126, 9724–9734; b) S. Velusamy, T. Punniyamurthy, Org. Lett. 2004, 6, 217–219; c) R. Liu, X. Liang, C. Dong, X. Hu, J. Am. Chem. Soc. 2004, 126, 4112–4113.
- [3] a) M. A. Fox, M. T. Dulay, *Chem. Rev.* 1993, 93, 341–357, and references therein; b) P. Pichat, M. Mozzanega, H. Courbon, *J. Chem. Soc. Faraday Trans. I* 1987, 83, 697–704, and references therein; c) G. Palmisano, V. Augugliaro, M. Pagliaro, L. Palmisano, *Chem. Commun.* 2007, 3425–3437, and references therein.
- [4] a) F. H. Hussein, G. Pattenden, R. Rudham, J. J. Russell, *Tetrahedron Lett.* 1984, 25, 3363-3364; b) S. Ghosh-Mukerji, H. Haick, M. Schvartzman, Y. Paz, *J. Am. Chem. Soc.* 2001, 123, 10776-10777; c) O. S. Mohamed, A. E. M. Gaber, A. A. Abdel-Wahab, *J. Photochem. Photobiol. A* 2002, 148, 205-210; d) F. X.

- Llabrés i Xamena, P. Calza, C. Lamberti, C. Prestipino, A. Damin, S. Bordiga, E. Pelizzetti, A. Zecchina, *J. Am. Chem. Soc.* **2003**, *125*, 2264–2271; e) Y. Shiraishi, N. Saito, T. Hirai, *J. Am. Chem. Soc.* **2005**, *127*, 8304–8306; f) S. Yurdakal, G. Palmisano, V. Loddo, V. Augugliaro, L. Palmisano, *J. Am. Chem. Soc.* **2008**, *130*, 1568–1569; g) M. Zhang, C. Chen, W. Ma, J. Zhao, *Angew. Chem.* **2008**, *120*, 9876–9879; *Angew. Chem. Int. Ed.* **2008**, *47*, 9730–9733
- [5] a) J. M. Keith, W. A. Goddard III, J. Oxgard, J. Am. Chem. Soc. 2007, 129, 10361 10369; b) K. Mori, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc. 2004, 126, 10657 10666; c) K. Yamaguchi, N. Mizuno, Chem. Eur. J. 2003, 9, 4353 4361.
- [6] A. D. N. Vaz, M. J. Coon, Biochemistry 1994, 33, 6442-6449.
- [7] O. I. Micic, Y. N. Zhang, K. R. Cromack, A. D. Trifunac, M. C. Thurnauer, J. Phys. Chem. 1993, 97, 7277 – 7283.
- [8] a) T. Ohno, S. Izumi, K. Fujihara, Y. Masaki, M. Matsumura, J. Phys. Chem. B 2000, 104, 6801-6803; b) F. H. Hussein, G. Pattenden, R. Ruham, J. J. Russell, Tetrahedron Lett. 1984, 25, 3363-3364; c) C. H. Lin, J. H. Chao, C. H. Liu, J. C. Chang, F. C. Wang, Langmuir 2008, 24, 9907-9915.
- [9] W. Zhao, W. Ma, C. Chen, J. Zhao, Z. Shuai, J. Am. Chem. Soc. 2004, 126, 4782 – 4783.
- [10] L. P. Hammett, Physical Organic Chemistry, McGraw Hill, NY, 1940, pp. 184–299.
- [11] R. E. Stenkamp, Chem. Rev. 1996, 96, 2625-2658.
- [12] a) C. Gabiel, M. Kaliva, J. Venetics, P. Baran, I. Rodriguez-Esudero, G. Zervou, M. Voyiatzis, A. Salifoglou, *Inog. Chem.* 2008, DOI: 10.1021/ic801427b; b) P. Jeske, G. Haselhorst, T. Weyhermüller, K. Wieghardt, B. Nuber, *Inorg. Chem.* 1994, 33, 2462–2471.